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A pulse compression method is proposed to simulate the propagation of a pulse in
an inhomogeneous plasma. It allows very fast computations compared to the usual
time-dependent code. The characteristics as well as the limitations of this method are
discussed. In particular the phase shift of the pulse frequency components is analyzed
for different kinds of density profiles. The validity of using this method under typical
conditions in fusion plasmas is then discussed.c© 2001 Elsevier Science

1. INTRODUCTION

The propagation of electromagnetic waves in inhomogeneous plasmas is an active field of
research, in particular for diagnostics in thermonuclear fusion and ionosphere plasmas [1].
The cold plasma approximation is usually used to describe wave propagation in such
media [2]. Under this cold plasma approximation and assuming stationary and inhomo-
geneous density, the one-dimensional (1D) propagation of a wave is then governed by the
following time-dependent equation[

∂2
t t − c2∂2

xx + ω2
pe(x)

]
E(x, t) = 0. (1)

This equation is valid in unmagnetized plasmas as well as for the ordinary mode polarization
in magnetized plasmas. Analytical solutions can be obtained in the case of a homogeneous
plasma [3]. For the extraordinary mode one must solve a more complex set of equations [4].
To simulate the propagation of a pulse in an inhomogeneous plasma, Eq. (1) has to be
solved numerically [5]. Owing to the dependence on both variablesx andt , time-dependent
codes solving Eq. (1) require a long computation time. We propose here an alternative
method inspired by techniques used in electronic, photonic, and radar applications called
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the pulse compression method. This method is based on the decomposition of a pulse in
the relevant set of monochromatic waves at different frequencies. Thus, a Fourier analysis
of the phases (and the amplitudes in the presence of multidimensional effects) of these
successive waves contained in a long wave train gives the same information as the equivalent
pulse. The terminology of pulse compression is derived from the fact that the equivalent pulse
is usually much shorter than the wave train with its successive frequencies. This aspect allows
in particular improvement in the signal-to-noise ratio and thus in measurement precision.
More details about the technical aspects of the method can be found, for example, in
Ref. [6]. The pulse compression method has already been proposed for density measurement
experiments in fusion plasmas [7]. For simplicity, only the case of the ordinary mode
polarization is presented in this paper but the proposed method can be similarly applied
to the extraordinary mode. The principle of the pulse compression method is presented in
Section 2. Section 3 is devoted to the evaluation of the phase needed to apply this method. Its
validity and its speed are discussed in Section 4 based on comparisons with a time-dependent
code.

2. PRINCIPLE OF THE PULSE COMPRESSION METHOD

The pulse compression method relies on the fact that a pulse can be decomposed in a set
of discrete frequencies. Consider for simplicity a wave with a Gaussian envelop att = ti ,

Ei (x) = E0 ei (k0x)e−4(x/σ)2, (2)

wherek0 is the wavenumber in vacuum andσ is the width at half amplitude (defined as
amplitudee−1). The corresponding spectrum of this signal has also a Gaussian shape:

S(k) =
∫ +∞
−∞

Ei (x)e
−ikx dx = E0

√
π

2
σe−[ σ4 (k−k0)]2

. (3)

Each component of this spectrum is phase shifted after the pulse propagation in the plasma.
If the phaseφ(k) is known or computed for all components, an inverse fast Fourier transform
(FFT) permits obtainment of the pulse after propagation in the plasma att = t f [8]:

E f (x) = 1

2π

∫ +∞
−∞

S(k)e−iφ(k)eikx dk. (4)

In the following the amplitude of the pulse after propagation will be normalized to the initial
amplitudeE0. This method implies that the phase shift for each frequency of the pulse is
independent of time. It is valid as long as the temporal history of the signal propagation
is not affected by nonlinear temporal effects. The different models which can be used to
calculate the phase are presented in the next section.

To apply a numerical procedure, Eq. (4) has to be sampled:

E f (x) = 1

2π

n∑
i=1

S(ki )e
−iφ(ki )eiki xδk. (5)

The parameterδk is important for calculating the final pulse with sufficient accuracy. First,
δk has to be small enough to allow a good definition of thek-spectrum of the initial pulse.
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At least 20 components are typically needed to define thek-spectrum for a realistic pulse
used in fusion plasmas. The parameterδk also imposes the lengthL of the spatial domain
in which the final signal is obtained:

L = 2π

δk
. (6)

It is thus important to be sure that this length is larger than the equivalent path of the pulse
in vacuum. In our procedure, we have chosen the center of the spatial domain as the origin
so that this domain takes place from−L/2 up to+L/2. As the initial pulse is centered at
x = 0, the equivalent path of the pulse in vacuum must be smaller thanL/2 to avoid any
ambiguity. The equivalent path in vacuum covered by the pulse is then directly deduced
from the position of the reconstructed signal.

Another characteristic of this method is the number of pointsn used for the FFT. First,
a standard zero padding technique is made to fix this number as a power of 2. And this
number must be high enough to have sufficient accuracy in real space. Indeed, the space
stepδx is given by

δx = 2π

nδk
. (7)

In order to obtain good accuracy in the reconstructed signal,δx has to be small compared
to the typical wavelength of this signal. In addition to needing a smallδk, this condition
requires a sufficient number of pointsn.

Consider for example an initial Gaussian pulse with a frequencyf = 60 GHz (or a
wavenumberk0 = 12.5 rad cm−1) and a spectral width1 f = 4 GHz at amplitudee−1

(which is equivalent to a spatial width of about 9.5 cm or a duration of the order of 0.31 ns).
Now we want to study by the pulse compression method the propagation of this pulse in
plasma. Two parameters have then to be defined: the wavenumber stepδk and the number
of pointsn used for the FFT. To avoid truncating effects, we define the Gaussian pulse
spectrum up to an amplitudee−4. The width at amplitudee−4 is twice the one ate−1. If we
choose 100 points to define the spectrum, the wavenumber step is then given by

δk = 2π

c
δ f = 1.67 rad m−1, (8)

with δ f = 21 f/100= 80 MHz. The equivalent path in vacuum of the pulse has to be
smaller thanπ/δk, equal to about 2 m in this case (which is equivalent to a propagation
time of 6.6 ns). The number of pointsn for the FFT has then to be defined which fixes the
precision of the reconstructed signal. If we impose 100 points per wavelength (that is large
enough to have a good definition), the numbern can be deduced from Eq. (7):

n = 2π

δk

1

δx
= 2π

δk

100

λ
= 75,000. (9)

Finallyn is chosen as the first power of 2 higher than 75,000, which givesn = 217 =131,072.
If we taken = 216 = 65,536, the precision will beδx = 5.7 10−5 m, which corresponds to
about 87 points per wavelength.
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3. MODELS FOR THE EVALUATION OF THE PHASE

The use of the pulse compression method requires evaluation of the phase shift for all
components of the pulse spectrum. In order to reduce the time of computation, it is im-
portant to optimize the determination of the phase. We show in this section that different
models can be used depending on the characteristics of the medium. These models depend
on the characteristics of the density profile. For monotonic and smooth profiles, the WKB
approximation allows an analytic expression of the phase. In the presence of density fluc-
tuations with small amplitudes, it is also possible to obtain an analytic expression using the
Born approximation. If the amplitude of the density fluctuations becomes strong, the phase
evaluation requires solving the Helmholtz equation.

3.1. WKB Approximation

In a homogeneous medium, the phase shift of a wave after a length pathL is given by

φ( f ) = 2π

c
f N L, (10)

wherec is the velocity of the light in vacuum,f the frequency of the wave, andN the
refractive index depending on the medium crossed. In the case of an inhomogeneous plasma,
the evaluation of the phase shift is more complicated and requires solving Eq. (1). However,
in some cases, we can assume that the medium properties vary so slowly that it is possible
to define locally the wavenumber and the refractive index. This is the WKB approximation,
and the phase can be written as

φ( f ) = 2π

c
f
∫ L

0
N(x) dx. (11)

It requires that the amplitude of the electric field varies very slowly compared to its phase. It
is often satisfied for a smooth density profile, except when the wave crosses a cutoff layer or
a resonance [2]. For some applications, like reflectometry, which is a diagnostic for density
profile measurements in fusion plasmas [9], the wave is reflected by a cutoff layer. In this
case, the WKB approximation is no longer valid in the cutoff-layer region. However if we
assume a linear density profile in this region, it is possible to express the electric field from
the Airy functions [10] and the phase shift can be written [11] as

φ( f ) = 4π

c
f
∫ xc( f )

x0

N(x) dx− π
2
, (12)

wherex0 andxc( f ) are, respectively, the plasma-edge and cutoff-layer positions. In Eq. (12)
the factor 2 introduced in the integral term is due to the return path of the wave. Moreover,
the term−π/2 is induced by the reflection on the cutoff layer.

Let us consider an initial pulse with a Gaussian shape, a frequencyf = 60 GHz, and a
spectrum width at half amplitude1 f = 5 GHz corresponding to a spatial width

Li = 4c

π1 f
= 7.6 cm. (13)

In the following, we simulate the propagation of this pulse in homogeneous and unmag-
netized plasma characterized by a plasma frequencyf p = 40 GHz. Assuming a path
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FIG. 1. Signal after propagation in a homogeneous plasma computed by the pulse compression method using
the WKB approximation.

length L = 10 m the phase shift for each component of the spectrum is evaluated ac-
cording to Eq. (11). The final signal computed after FFT is represented in Fig. 1. The
position of this signalx = 13.4 m agrees with the theoretical result and corresponds to
the path the pulse would have covered in vacuum (which is equal to the time of prop-
agation multiplied byc). We can also notice a significant broadening of the pulse as
well as an asymmetry in its shape. This is induced by dispersive effects occurring in
dielectric media [12] as well as in plasmas [13]. The WKB approximation is then well
adapted for study of these dispersive effects in plasmas with monotonic and smooth density
profiles.

3.2. Born Approximation

In typical fusion or ionosphere plasmas, the density profile presents significant fluctua-
tions so that the WKB approximation fails. In the case of small-amplitude density fluctua-
tions, only the first-order term of the perturbation series can be kept. This hypothesis, called
the Born approximation, allows an analytical evaluation of the phase shift for different types
of fluctuations [11, 14].

An example is considered for a linear density profile (n0 = 6× 1019 m−3, R= 0.5 m) and
a density fluctuation with a Gaussian shape, a wavenumberk f = 1.5 cm−1, an amplitude
af = δn0/nc = 0.01, and a width at half amplitudedf = 10 cm. The initial pulse with
a frequency f = 50 GHz and a width equal to 50 cm is reflected by a cutoff layer at
xc = 26.25 cm. According to the Born approximation, the phase variation induced by the
fluctuations is given by [11]

1φ = −√πk0

(
L

k f

)1/2
δn0

nc
cos[k f (xc − x f )+ π/4] exp

[
− (xc − x f )

2

D2
f

]
, (14)

wherek0, δn0, xc, andnc are, respectively, the wavenumber in vacuum, the amplitude of the
fluctuation, the cutoff-layer position, and the critical density. For a linear density profile,
the gradient lengthL is equal to the distance from the plasma edge up to the cutoff layer.
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FIG. 2. Reflected pulse in the presence of density fluctuations with small amplitude computed by the pulse
compression method using the Born approximation.

The total phase is then obtained from

φ∗ = φ +1φ, (15)

whereφ is the phase given by the WKB theory for a density profile without fluctuation.
The pulse reflected by the plasma for the fluctuation positionx f = 26.25 cm and computed
by the pulse compression method using Eqs. (14) and (15) is shown in Fig. 2. It is clear
that there is no significant deformation in the signal shape. In fact, the dominant physical
process is the oscillation of the cutoff layer. Consequently, a variation in the time of flight
(time between the initial and reflected pulses) should be noticed. As the time of flight is
equal to the derivative of the phase with regard to the pulsation, this variation is obtained
by deriving Eq. (15):

τ ∗(ω) = ∂φ∗

∂ω
= ∂φ

∂ω
+ ∂1φ

∂ω
= τ(ω)+1τ(ω). (16)

Let us notice that the time-of-flight variations are expressed as a function of the pulsa-
tion ω but it is equivalent to expressing them as a function of the fluctuation position.
We have thus determined the variations of the time of flight as a function of the density
fluctuation position from the reflected signals computed by the pulse compression method.
The results compared to the term1τ of Eq. (16) are presented in Fig. 3. The very small
discrepancies between the analytical curve and the computed one are induced by the nu-
merical method used to evaluate the time of flight. The good agreement shows the validity
of the pulse compression method using Born approximation in the case of density fluctu-
ations with small wavenumber. A limit of validity for the Born approximation is given in
Ref. [15].

3.3. Helmholtz Equation

In the case of density fluctuations with a large amplitude, the Born approximation is
no longer valid. In that case, a computation of Eq. (1) is needed to evaluate the phase.
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FIG. 3. Time-of-flight variations as a function of the density fluctuation position: comparison between the
theoretical expression of the Born approximation (full line) and the variations deduced from the pulses computed
by the pulse compression method (dotted line).

However monochromatic waves can be considered for each frequency component of the
pulse spectrum. The time-dependent Eq. (1) can then be reduced to the following Helmholtz
equation: [

d2

dx2
+ k2

0 N2(x)

]
E(x) = 0. (17)

A numerical code solving this equation has been developed [16]. The pulse compression
method can then be used from the phases computed by the Helmholtz code.

An example is shown for a linear density profile (n0 = 6× 1019 m−3, R= 0.5 m) and
a density fluctuation with a wavenumberk f = 18 cm−1, an amplitudeaf = δn0/nc = 0.03,
and a width at half amplitudedf = 8 cm. This fluctuation is located atx =
18 cm, where the Bragg backscattering condition is satisfied [17]. In such cases, one
part of the wave is backscattered by the fluctuations. The reconstructed signal is thus
composed from a backscattered pulse and a reflected pulse. The successive pulses with
decreasing amplitudes are due to the multiple reflections of the wave between the fluc-
tuations and the cutoff layer, as shown in Fig. 4. From the positions of these different
pulses, we can deduce the amplitude and the time of flight for the first backscattered and
the reflected pulses (adiff = 0.37, aref = 0.85, τdiff = 1.4 ns,τref = 4.9 ns). The values of
time of flight are similar to those obtained theoretically in the case of a linear density
profile.

4. DOMAINS OF VALIDITY OF THE PULSE COMPRESSION METHOD

The pulse compression method presented in this paper is efficient as long as Eqs. (4)
and (5) are valid. It amounts to saying that no nonlinear temporal effects play a role in
the interaction between the wave and the plasma (in the opposite case, coupling between
different Fourier components would distort the signal). We propose in this section to verify
the validity of the pulse compression method by comparisons with the time-dependent code.
The improvements in times of computation are also shown and discussed.
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FIG. 4. Reflected pulse computed by the pulse compression method using the Helmholtz equation: the case
of a Bragg-resonant density fluctuation.

4.1. Study of the Validity in the Presence of Realistic Density Fluctuations

In order to validate the pulse compression method, we present here a simulation obtained
from the time-dependent code in the same conditions as those presented in Fig. 4. The
backward computed signal is shown in Fig. 5. We can see the good agreement with the
reflected signal given by the pulse compression method. Let us just notice that a change on
the horizontal axis origin has been needed in Fig. 5. Indeed, the horizontal axis represents
the real space for the time-dependent code while it corresponds to the equivalent path in
vacuum for the pulse compression method.

Various comparative tests have shown that the pulse compression method gives results
identical to the time-dependent code (in the limit of the numerical scheme accuracy) as
long as no cavity is present in the plasma. Indeed the presence of cavities induces the
temporal phenomena of wave trapping which can lead to a discrepancy between the two

FIG. 5. Reflected pulse computed by the time-dependent code in the same case as presented in Fig. 4 (plasma
edge atx = 3.87 m).
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FIG. 6. Reflected pulse computed by the pulse compression method using the Helmholtz equation: the case
of hole density in the vicinity of the cutoff layer.

methods (as discussed in the next section). In fusion plasmas for instance, some cavi-
ties could be induced by MHD-like as well as microturbulent density fluctuations. How-
ever, the typical level of fluctuation in such media is rarely high enough to lead to this
scenario.

4.2. Nonlinear Effects: Large Gaussian Density Hole

We consider now the case of a plasma with a density hole of amplitudeaf = 50% located
just behind the cutoff layer atx f = 32 cm. The reflected signals computed by the pulse
compression method and the time-dependent code are shown, respectively, in Figs. 6 and 7.
In this case we can notice significant differences in the shape of the reflected signal. This is
induced by the presence of a subcritical cavity in the evanescent region of the wave. One
part of the wave is trapped in the density hole, as shown in Fig. 7 (as the plasma region

FIG. 7. Reflected pulse computed by the time-dependent code in the same case as presented in Fig. 6 (plasma
edge atx = 2.18 m).
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corresponds tox > 2.18 m, the trapping occurs in the vicinity of the cutoff layer located at
x ' 2.4 m). This process of wave trapping depends on the time and frequency components,
so the pulse compression method fails. Indeed, the Helmholtz code does not take into
account the temporal aspect of the wave–plasma interaction in this case. Consequently, in
the presence of such temporal processes as wave trapping, the pulse compression method
will be no longer valid.

The dynamical phenomena of wave trapping depend on various parameters, namely the
shape of the density profile and, in particular, of the cavity (amplitude, width, ...), as well
as on the wave frequency. The process of wave trapping is the strongest when the pulse
duration is on the same order of magnitude as the transit time in the cavity. In the case of
a Gaussian cavity (as presented in Figs. 6 and 7) we have noticed that the discrepancies
(evaluated from the differences in the signal amplitude) between pulse compression and
time-dependent methods do not exceed 1% until a density fluctuation amplitude of 20%.
The pulse compression method can then be used for various applications, implying fusion
plasmas.

4.3. Improvements in Computation Time

To emphasize the speed of the pulse compression method, we compare here the compu-
tation time with the time-dependent code. This is exemplified for a pulse propagating in
a linear density profile. The incident frequency of this pulse is equal to 60 GHz and the
maximal plasma frequency is equal to 65 GHz. The pulse is then reflected by the plasma
at the positionx = R(60/65)2 whereR is the plasma radius. The computations are carried
out using various plasma radii. The comparison between the pulse compression method and
the time-dependent code is presented in Fig. 8 (a precision of 100 points per wavelength
has been chosen for both methods). We can notice that the larger the plasma radius, the
higher the improvement in computation time. For a plasma radiusR= 0.25 m, the pulse
compression method is about seven times faster than the time-dependent code while it is at
least 50 times faster forR= 3 m.

FIG. 8. Comparison of the computation time between the time-dependent code (square symbols) and the
pulse compression method (triangle symbols).
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5. DISCUSSION

The propagation of electromagnetic waves in plasmas presents numerous applications in
the fields of thermonuclear fusion and ionosphere physics. The propagation of a wave in
plasmas can rarely be solved analytically and numerical simulations are usually required.
Under the cold plasma approximation, we have proposed here a fast method for computing
the propagation of a pulse. The major interest of the pulse compression method is that it
is incomparably faster than a code solving the time-dependent wave equation. Although
this method can be no longer valid in severe conditions, such as those encountered in the
presence of strong, localized perturbations (density holes), it is shown that it could be used
in typical fusion or ionosphere plasmas. It is for example well adapted for the study of
microwave diagnostics in fusion plasmas.

The pulse compression method is valid for different modes of wave propagation as long
as the phase evaluation is correct. In the case of a magnetized plasma for example, it can be
applied to the ordinary mode polarization as well as to the extraordinary mode polarization.
Let us just notice that it is particularly interesting for the extraordinary mode owing to
the complex equations solved by a time-dependent code [18]. The main restriction of the
pulse compression method is that it requires that the density profile be stationary on a time
scale much larger than the incident wave period. To study time-dependent phenomena,
more complicated methods based on the resolution of the full set of Maxwell equations are
needed.
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